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Abstract

This paper addresses the fundamental problem of optimizing the internal structure of a vertical wall that must meet

two requirements, thermal insulation and mechanical strength. The wall is a composite of solid material (e.g., brick) and

parallel air caverns with varying thickness and number. It is shown that the internal structure of the wall (the number of

air caverns) can be optimized so that the overall thermal resistance of the wall is maximal, while the mechanical stiffness

of the wall is fixed. The maximized thermal resistance increases when the effect of natural convection in the air gaps is

weaker, and when the specified wall stiffness decreases. The optimal number of air gaps is larger when the effect of

natural convection is stronger, and when the specified wall stiffness is smaller. The optimal structure is such that the

volume fraction occupied by air spaces decreases when the natural convection effect (the overall Rayleigh number)

increases, and when the prescribed wall stiffness increases. The paper draws attention to a new class of thermal design

problems, in which the system architecture is derived from a combination of heat transfer and mechanical strength

considerations. This class represents an extension of the constructal design method, which until now has been used for

maximizing thermofluid performance subject to size constraints. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Flow system geometry: variable and optimized, not

frozen

In this paper we draw attention to the close rela-

tionship between the internal structure of a flow system

and its global thermal performance [1–3]. The funda-

mental question that we address is how to select the size

of air cavities in walls or wall elements (e.g., bricks) for

the purpose of maximizing the global resistance to heat

transfer through the wall. We propose this fundamental

problem on the background of a large volume of pub-

lished research on heat transfer through specified (fro-

zen) enclosure configurations that are heated from one

side and cooled from the other. This body of published

work is not reviewed here. It is summarized for example

in [4–8]: its main results are accepted and used in the

present study, e.g., Eq. (17).

The problem we consider is fundamentally different: it

is about the optimization of geometry for a specific

purpose, in this case, the maximization of the global per-

formance of the side-heated wall with internal air cavi-

ties. It is about the optimization of the topology of a

potentially complex flow system, in accordance with the

main thread of constructal design and theory [3].

The design opportunity for varying and optimizing

the geometric form of cavities in walls with natural

International Journal of Heat and Mass Transfer 45 (2002) 3313–3320
www.elsevier.com/locate/ijhmt

* Corresponding author. Tel.: +1-919-660-5309; fax: +1-919-

660-8963.

E-mail address: dalford@duke.edu (A. Bejan).

0017-9310/02/$ - see front matter � 2002 Elsevier Science Ltd. All rights reserved.

PII: S0017-9310 (02 )00052-2



convection was recognized in a few previous studies,

e.g., [1,2,9,10]. The global objective in those studies,

however, was the minimization of the thermal resistance

of the fluid-filled cavity alone, not the maximization of

the insulation capability of an assembly of cavities

and separating walls (the present problem). For exam-

ple, it was shown that for two-dimensional natural

convection in a vertical cavity with side-to-side heat

transfer the global resistance is minimum when the as-

pect ratio of the cavity has a value of order 1 or smaller,

the smaller when the Rayleigh number is larger [8,9]. In

other words, the heat transfer across the cavity is im-

peded the least when the cavity shape is relatively

‘round’, i.e., close to square. The same conclusion was

reached in a more recent study by Frederick [10].

Lorente [1] and Lartigue et al. [2] have documented

the behavior of the global resistance when the side walls

of the cavity are deformed (bowed inward) so that the

cavity profile resembles a concave lens. Deformations of

this kind are commonly found in the air cavities between

two glass panes in cold and windy climates. These

studies showed that the global resistance to heat transfer

increases significantly, this, in spite of the fact that the

narrowing of the cavity mid-section suppresses the flow

and its natural convection effect.

Even though the few existing studies have dealt with

the minimization of the global thermal resistance, they

are important because they document the strong rela-

tionship that exists between global performance and

cavity geometry. This is the relationship that we exploit

in the present paper. Our objective is the optimization

of the wall with internal cavities as an insulation sys-

tem that must also perform adequately as a strong me-

chanical structure.

2. The competition between thermal and mechanical

objectives

Why should we expect to find an optimal cavity size

when we design a cavernous wall as an insulation sys-

tem? Consider the two-dimensional wall configuration

shown in Fig. 1. Its overall dimensions are fixed – the

Nomenclature

b dimensionless group, Eq. (20)

g gravitational acceleration, m s�2

H height, m

I area moment of inertia, m4

~II dimensionless area moment of inertia, Eq.

(10)

k thermal conductivity, W m�1 K�1

L overall thickness, m

m exponent, Eq. (18)

n number of air gaps

Nu Nusselt number, Eq. (16)

R overall thermal resistance, W K�1

~RR dimensionless thermal resistance, Eq. (19)

Ra Rayleigh number, Eq. (6)

t thickness, m

W wall width, m

x transversal coordinate, m

Greek symbols

a thermal diffusivity, m2 s�1

b coefficient of volumetric thermal expansion,

K�1

DT overall temperature difference, K

h temperature difference across one air gap, K

m kinematic viscosity, m2 s�1

/ air volume fraction

Subscripts

a air

b solid

c critical

max maximum

opt optimum

0 reference

Fig. 1. Vertical insulating wall with alternating layers of solid

(brick) material and air.
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thickness L, the height H, and the width W perpendic-

ular to the plane of Fig. 1. There are n vertical air-filled

cavities of thickness ta, which are distributed equidis-

tantly over the wall thickness L. This means that there

are ðnþ 1Þ slabs of solid wall material (e.g., brick) of

individual thickness tb, which are also distributed equi-

distantly. We characterize the air and brick (terra cotta)

composite by using the air volume fraction /, which

along with the wall volume HLW is a global design

parameter

/ ¼ nta=L; ð1Þ

1 � / ¼ ðnþ 1Þtb=L: ð2Þ

The overall thermal resistance of this composite is the

sum of the resistances of air and brick layers. If the heat

transfer across each air space is by pure conduction,

then the thermal resistance posed by each air space is

ta=ðkaHW Þ, where ka is the thermal conductivity of air.

Similarly, the resistance of each layer of brick material is

tb=ðkbHW Þ. The overall resistance is

R ¼ nta
kaHW

þ ðnþ 1Þtb
kbHW

ð3Þ

or, after using Eqs. (1) and (2),

R ¼ /L
kaHW

þ ð1 � /ÞL
kbHW

: ð4Þ

Eq. (4) states that the thermal performance of the com-

posite does not depend on the varying geometry, i.e., on

how many air spaces and slabs of brick we use. This is

correct, but only when the air space is ruled by pure

conduction, i.e., when the thickness ta is smaller than the

thickness of the laminar natural convection boundary

layers that would line the vertical walls of each cavity.

The order of magnitude criterion for small ta must be [8]

ta KHRa�1=4
H ;h ; ð5Þ

where RaH ;h is the Rayleigh number based on the height

(H) and temperature difference (h) across one air cavity

RaH ;h ¼ gbH 3h=ðamÞ: ð6Þ

The temperature difference h is smaller than the overall

temperature difference DT that is maintained across the

entire system (Fig. 1). In the case of air and brick ma-

terial, the two thermal conductivities are markedly dif-

ferent ðkb=ka � 20 � 1Þ, and this means that the overall

DT is essentially the sum of the temperature differences

across all the air cavities

DT ffi nh: ð7Þ

Putting Eqs. (5)–(7) together, we see that the insensi-

tivity of R to varying the internal structure (n), Eq. (4),

can be expected only when the number of air spaces is

large enough,

n5=4 J/
L
H
Ra1=4

H ;DT : ð8Þ

In this inequality, RaH ;DT is based on the overall tem-

perature difference, RaH ;DT ¼ gbH 3DT=ðamÞ, and is a

known constant because H and DT are specified global

parameters.

If the number of air spaces is smaller than in Eq. (8),

the natural convection effect decreases the resistance

posed by each air space, and the overall R value is

greater than in Eq. (3). This is why a large enough n, or a

small enough ta, is desirable from a thermal insulation

standpoint. On the other hand, the effect of a large n is

detrimental to the mechanical stiffness (rigidity) of the

wall assembly. When / is prescribed, the stiffest assem-

bly is the one where all the solid material is placed in the

outermost planes, i.e., the wall where two tb-thin slabs

sandwich a single air space. The stiffest wall is the

worst thermal insulator, because it contains the thick-

est air space, which is penetrated by the largest natural

convection heat transfer current. The optimal internal

structure of the wall (n) results from the competition

between thermal performance and mechanical perfor-

mance. If the mechanical performance is specified, then

the wall stiffness serves as constraint in the process of

maximizing thermal performance, from which the opti-

mal geometric form emerges.

3. Stiffness

The mechanical strength of the wall, or its resistance

to bending and buckling in the plane of Fig. 1 is con-

trolled by the area moment of inertia of the horizontal

wall cross-section [11,12]

In ¼
Z L=2

�L=2

x2W dx: ð9Þ

The cross-section over which this integral is performed,

is sketched in the details shown on the right-hand side

of Fig. 1. The area element W dx counts only the solid

parts of the cross-section, namely, the tb-thick slabs of

brick material. For the sake of simplicity, in this calcu-

lation we neglect the transversal ribs [see detail (a) in

Fig. 1] that connect the tb slabs so that the wall cross-

section rotates as a plane during pure bending. We as-

sume that the transversal ribs use considerably less

material than the tb slabs. Their role is the same as the

role of the central part (the web) of the I profile of an

I-beam. In fact, the cross-section of the cavernous wall

structure is a conglomerate of I-beam profiles that have

been fused solidly over the top and bottom surfaces of

the I shape. In practice, the ribs (a) are more commonly

arranged in a staggered pattern, as shown in the upper-

right corner of Fig. 1.
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In the case of a wall with vanishing cavities ð/ ¼ 0Þ
the area moment of inertia is maximum and equal to

L3W =12. We use this value as reference in the nondi-

mensionalization of In,

~IIn ¼
In

L3W =12
; ð10Þ

where the subscript n indicates the number of air gaps.

We evaluate integral (9) case by case, assuming in each

case that the cross-section is symmetric about x ¼ 0,

~II1 ¼ 1 � /3; ð11Þ

~II2 ¼ 1 þ 1 � /
3

� �3

� 1 þ 2/
3

� �3

; ð12Þ

~II3 ¼ 1 þ 3 � /
6

� �3

� /
3

� �3

� / þ 1

2

� �3

; ð13Þ

~II1 ¼ 1 � /: ð14Þ

These results are displayed in Fig. 2. The stiffness is

larger when n and / are smaller.

An alternative view of this relation is presented in

Fig. 3. When the stiffness is constrained, ~IIn ¼ constant,

for each geometry (n) that the designer might contem-

plate there is one value of / that the wall composite

must have. In such cases the / value is larger when the

number of air gaps is smaller. Less structural (solid)

material is needed when there are fewer air gaps.

4. Thermal resistance

When the effect of natural convection cannot be ne-

glected, the overall thermal resistance formula (3) has

the form

R ¼ nta
kaHWNu

þ ðnþ 1Þtb
kbHW

: ð15Þ

In the denominator of the first term (the contribution of

all the air gaps), Nu is the overall Nusselt number that

expresses the relative heat transfer augmentation effect

due to natural convection in a single air space,

Nu ¼ qactual

qconduction

: ð16Þ

Several correlations of experimental and numerical Nu
values have been reported [13–23], however, they cannot

be used in the reported forms because they refer only to

the high-Rayleigh number, or the convection dominated

regime (NuJ 2). More appropriate for the present geo-

metric optimization problem is a Nu function that covers

smoothly the entire range of possibilities, from con-

duction (small ta) to convection (large ta).
The solution we chose is based on the summary pre-

sented in [8, Fig. 5.8], which shows that the most fre-

quently used high-Ra correlations are represented well by

the analytical expression derived based on boundary

layer theory [8,24]

Nu ¼ 0:364
ta
H
Ra1=4

H ;h ðwhen NuJ 2Þ: ð17Þ

It is worth pointing out that Eq. (17) is consistent with

the pure conduction criterion (5); in other words, Eq.

(17) holds when Eq. (5) fails. Next, we joined the high-

Ra asymptote (17) with the pure conduction asymptote

ðNu ¼ 1Þ by using the technique of Churchill and Usagi

[25]

Nu ¼ 1

�
þ 0:364

ta
H
Ra1=4

H ;h

� �m
�1=m

: ð18Þ

For the curve-smoothing exponent we chose m ¼ 3,

which is an order of magnitude that has been used be-

Fig. 2. The area moment of inertia of the wall cross-section, as

a function of the number of air gaps and air volume fraction.

Fig. 3. The relation between air volume fraction and number of

air gaps when the area moment of inertia of the wall cross-

section is constrained.
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fore (e.g., [26,27]). In summary, the overall resistance

formula (15) can be nondimensionalized by using as

reference scale the resistance across a completely solid

wall [L=ðkbHW Þ], and converting RaH ;h into RaH ;DT via

Eqs. (6) and (7)

~RR ¼ R
L=ðkbHW Þ

¼ kb

ka

/ 1

�
þ 0:364n�5=4/

L
H
Ra1=4

H ;DT

� �m��1=m

þ 1 � /:

ð19Þ

The overall resistance ~RR emerges as a function of the

variable geometric parameters n and /, and the fixed

parameters kb=ka and the global parameter

b ¼ L
H
Ra1=4

H ;DT : ð20Þ

The geometric parameters n and / are related through

the global stiffness constraint ð~II ¼ constantÞ displayed in

Fig. 3.

In conclusion, when the stiffness constraint is in-

voked, the global resistance ~RR depends on only one

geometric parameter, / or n. This effect is illustrated in

Fig. 4, which shows that ~RR can be maximized with re-

spect to the number of air cavities. The ~RR maximum

shifts toward larger n values (more numerous and nar-

rower air gaps) as b increases. The ~RR maximization il-

lustrated in Fig. 4 was repeated for other ~II values in the

range 0.7–0.95.

Let ~RRmax and nopt denote the coordinates of the peak

of one of the b ¼ constant curves plotted in Fig. 4. The

maximum resistance ~RRmaxðb; ~IIÞ deduced from Fig. 4 and

from similar calculations for other ~II values, is reported

in Fig. 5. Larger b values represent stronger natural

convection, and this is reflected in smaller ~RRmax values.

Larger ~II values represent stiffer walls that use more solid

material (Fig. 3), and, consequently, ~RRmax decreases as ~II
increases.

The optimal number of air gaps (nopt) that corre-

sponds to the ~RRmax results of Fig. 5 is reported in Fig. 6.

Fewer air gaps are better when the natural convection

effect is weak (small b), and when the required stiffness

approaches that of the solid wall (~II ¼ 1).

The corresponding volume fractions of air and solid

material can be calculated by combining Fig. 6 with Fig.

3. The result is the function /ðb; ~IIÞ reported in Fig. 7.

Fig. 4. The overall thermal resistance as a function of the

number of air gaps when the external parameters b and ~II are

fixed.

Fig. 5. The maximized wall thermal resistance as a function of

the global natural convection parameter b and the global stiff-

ness parameter ~II .

Fig. 6. The optimal number of air gaps as a function of the

global natural convection parameter b and the global stiffness

parameter ~II.
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More solid material (a smaller /) is needed when the

wall must be stiffer (a larger ~II), and when the natural

convection effect is stronger (a larger b).

The optimal trade-off between the thermal and me-

chanical functions of the cavernous wall is also visible in

Fig. 8. This figure shows the maximized resistance ~RRmax

as a function of the optimized air volume fraction / and

the stiffness parameter ~II . Fig. 8 was obtained by com-

bining Figs. 5 and 7, and eliminating b.

5. Fixed amount of solid

An alternative approach to selecting the internal

structure of the wall is to consider the amount of solid

material (or weight) as a constraint. The weight con-

straint replaces the stiffness constraint used in the pre-

ceding analysis. The fixed amount of solid material is

such that when there are no cavities the wall thickness is

L0. We contemplate the design of a cavernous structure

(Fig. 1) with n vertical air gaps of thickness ta each,

sandwiched between ðnþ 1Þ solid slabs of thickness tb,

tb ¼ L0

nþ 1
: ð21Þ

The overall thickness of the cavernous wall is greater

than L0,

L ¼ nta þ ðnþ 1Þtb; ð22Þ

where n and ta may be varied independently. These two

parameters are the degrees of freedom of the structure.

The overall thermal resistance of the wall with in-

ternal cavities can be written based on Eq. (15), where ~RR
is defined in Eq. (19),

~RR ¼ kbnta
kaL0Nu

þ 1: ð23Þ

We are interested in the effect of ta and n on ~RR. In the

limit ta ! 0, the heat transfer across each air gap is by

pure conduction, and Nu approaches 1,

~RR ¼ kbnta
kaL0

þ 1: ð24Þ

In this limit ~RR increases linearly with the product nta,
suggesting that the use of more numerous and wider air

gaps leads to a better design.

The opposite extreme is when ta is large enough so

that the heat transfer through the air spaces is by

boundary layer natural convection, cf. Eq. (17). The

global thermal resistance in this limit is

~RR ¼ kbHn5=4

ð0:364ÞkaL0Ra
1=4
H ;DT

þ 1: ð25Þ

It shows that ta no longer influences thermal perfor-

mance when convection dominates in the air space, i.e.,
~RR does not have a maximum with respect to ta. In this

limit ~RR continues to increase as the number of air slots

increases, i.e., as the total thickness of the wall increases.

The limits (24) and (25) are sketched in Fig. 9.

Eq. (25) represents the highest resistance that can be

achieved by increasing ta at constant n. To find the

critical tac value that is ‘large enough’, we intersect the

limits (24) and (25), as shown in Fig. 9,

tac � 3Hn1=4Ra�1=4
H ;DT : ð26Þ

Air spaces that are made thicker than this size will

not contribute more to the overall thermal resistance of

the wall.

Fig. 8. The maximized thermal resistance versus the required

air volume fraction when the overall stiffness is constrained.

Fig. 7. The optimal air volume fraction as a function of the

global natural convection parameter b and the global stiffness

parameter ~II.

3318 S. Lorente, A. Bejan / International Journal of Heat and Mass Transfer 45 (2002) 3313–3320



6. Concluding remarks

In this paper we showed that the internal structure

of a cavernous wall can be derived optimally from the

competition between the thermal insulation and me-

chanical strength functions of the wall. This combina-

tion of two functions, thermal and mechanical, is new in

an optimization at such a simple and fundamental level.

Previous studies of walls with air enclosures have dealt

only with the thermal insulation characteristics of vari-

ous wall structures.

In addition, the competition between the thermal and

mechanical functions of the structure represents an ex-

tension of the method of constructal design – the gen-

eration of geometric form based on the maximization of

global performance subject to global constraints. Most

of the constructal design work that has been performed

so far [3] was based on the maximization of heat and

fluid flow performance in isolation, without reference to

mechanical strength. Similarly, considerably older ex-

amples of constructal design are known in the field of

strength of materials, where strength was maximized

and configuration was optimized without reference to

thermofluid performance (e.g., [11, p. 106]).

The simultaneous consideration of the thermal and

mechanical functions of the complex structure is the

defining feature of the problem proposed in this paper.

We showed that the number of air gaps built into the

wall can be optimized when the overall stiffness is spec-

ified. The optimal number of air gaps increases when the

effect of natural convection increases, and when the

specified wall stiffness decreases. The maximized wall

thermal resistance is larger when the effect of natural

convection in the air gaps is weaker, and when the wall

stiffness is smaller. The optimal volume fraction occu-

pied by air in the cavernous structure decreases when the

natural convection effect becomes stronger, and when

the wall stiffness increases.

This problem can be pursued from alternative points

of view, depending on the objectives of the greater sys-

tem to which the cavernous wall belongs. We took a step

in this direction in Fig. 9, where we showed the relation

between internal geometry and global thermal perfor-

mance when the weight of the wall is fixed. Another

possible direction is to frame the optimization on the

basis of thermoeconomics [28–33], by attaching costs to

the heat loss through the wall, and to the construction of

the wall, and minimizing the total cost over the lifetime

of the system. Thermoeconomics is a promising exten-

sion for future work not only on this problem but also in

constructal design in general. For example, many of the

engineered flow systems that in [3] derived their geom-

etry from the optimal balancing of flow resistances,

could have their architectures derived based on the

minimization of total cost.

The combined ‘flow and strength’ geometric optimi-

zation method illustrated in this paper can be applied

in other fields where mechanical structures must carry

loads while posing least resistance to internal and ex-

ternal flows. Good candidates are the mechanical

structures of aircraft, ships and automobiles. For ex-

ample, it was shown that the cruising speeds of all flying

bodies (aircraft, birds, insects) can be predicted ap-

proximately by minimizing the total flying power re-

quirement, i.e., by focusing on fluid flow optimization

(e.g., [3, pp. 234–240]). The deviations from these pre-

dictions may be accountable on the basis of mechanical

strength considerations, in addition to and simulta-

neously with flow considerations. This combination may

be carried further into the design of structural elements

for vehicles, which, like the wall of Fig. 1, could be

conceptualized and morphed into geometric forms with

more than one function.
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